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Abstract 

 

Information regarding the magnitude and distribution of PM2.5 emissions is crucial in 

establishing effective PM regulations and assessing the associated risk to human health and the 

ecosystem. At present, emission data is obtained from measured or estimated emission factors of 

various source types. Collecting such information for every known source is costly and time 

consuming. For this reason, emission inventories are reported periodically and unknown or 

smaller sources are often omitted or aggregated at large spatial scale. To address these 

limitations, we have developed and evaluated a novel method that uses remote sensing data to 

construct spatially-resolved emission inventories for PM2.5. This approach enables us to account 

for all sources within a fixed area, which renders source classification unnecessary.  We applied 

this method to predict emissions in the northeast United States during the period of 2002-2013 

using high- resolution 1 km x 1km Aerosol Optical Depth (AOD). Emission estimates 

moderately agreed with the EPA National Emission Inventory (R2=0.66~0.71, CV = 17.7~20%). 

Predicted emissions are found to correlate with land use parameters suggesting that our method 

can capture emissions from land use-related sources.  In addition, we distinguished small-scale 

intra-urban variation in emissions reflecting distribution of metropolitan sources. In essence, this 

study demonstrates the great potential of remote sensing data to predict particle source emissions 

cost-effectively.  

 

Introduction 

 

Fine particulate matter (PM2.5) is a major public health burden associated with a range of adverse 

health effects (Schwartz and Dockery 1992, Schwartz 2001, Pope et al. 2002, Schwartz, Laden, 
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and Zanobetti 2002, Ren, Williams, and Tong 2006, Zanobetti and Schwartz 2006, Turner et al. 

2011, Lepeule et al. 2012). As such, identifying particle sources and quantifying their emissions 

is of paramount importance to the development of air quality standards and the enforcement of 

emission reduction policies. The US Environmental Protection Agency (EPA) is responsible for 

developing a nationwide particle emission inventory, the National Emission Inventory 

(NEI)(EPA 2008, 2011), which is the most comprehensive database for criteria air pollutants 

(CAP) and hazardous air pollutants (HAP) emissions. The NEI is updated every three years 

using data collected from state, local and tribal air agencies as well as EPA emission trading 

programs.  Collecting information on area and mobile emission sources can be challenging 

especially when there are many of small sources widely dispersed over a large area. For instance, 

smaller stationary sources such as wood furnaces and stoves are not defined as major point 

sources in the NEI and thus are not rigorously regulated. However, these smaller sources may 

represent a large fraction of the total emissions as bigger industrial sources decrease in intensity 

due to strict regulations and improved technology. For PM, the current NEI aggregates mobile 

sources and nonindustrial sources at county level. Information for such broad geographic areas, 

in combination with measurement error and modeling uncertainties may limit effectiveness to 

implement emission regulations. Coarse spatial resolution also limits the utility of the NEI data 

to assess human health risks  or develop air pollution models (EPA 2008).   

 

Satellite data is increasingly important for air pollution exposure assessment because of scarce 

and ad hoc spatial-temporal coverage of the federal monitoring network. Satellite data has been 

incorporated in a variety of air quality applications, including tracking long-term pollution 

transport, identifying exceptional events such as wild fires, fireworks and dust storms, and 

estimating ground level pollution concentrations (Duncan et al. 2014). Satellite-based sensors 

have provided information on important air pollutants, such as nitrogen dioxide (NO2), sulfur 

dioxide (SO2), volatile organic compounds (VOCs) and fine particulate matter (PM2.5)(Martin 

2008). Specifically, a growing number of studies have successfully employed AOD data to 

characterize properties and patterns of PM2.5 (Gupta and Christopher 2009, Liu, Paciorek, and 

Koutrakis 2009, Kloog et al. 2011, Lee et al. 2012, Hu et al. 2014, Kloog et al. 2014).  

 



AOD is a dimensionless measure of the attenuation of light due to the presence of aerosols that 

prevent light transmission via absorption or scattering. This fundamental property of AOD, with 

proper correction for absorption and scattering of gases in the atmosphere, makes it a suitable 

surrogate of the aerosol loading in the atmosphere (Hoff and Christopher 2009). Nevertheless, 

vigilant calibration of the AOD data is required due to several physical differences among AOD 

and ground-level PM2.5. A critical concern is that AOD represents the total amount of aerosols in 

the entire atmospheric column while measured PM2.5 only reflects particles at ground level. The 

relationship between AOD and PM2.5 is therefore highly dependent on the vertical distribution of 

aerosols. Moreover, like all satellite measurements, AOD readings are snapshots of the aerosol 

distribution at that exact moment, while filter-based PM2.5 samples are collected over a 24-hour 

period. This temporal mismatch also influences the association between AOD and ground level 

PM2.5. To address these concerns, multiple techniques including neural network, generalized 

additive models and hybrid models have been used to generate AOD-derived PM2.5 

concentrations (Gupta and Christopher 2009, Lee et al. 2012, Hu et al. 2014, Kloog et al. 2014). 

Recent advancements in various predictive statistical models (Kloog et al. 2014) have enabled 

scientists to assess daily PM2.5 exposures with continuous spatial coverage, which are crucial for 

legislation development and health effects studies. Nonetheless, satellite data has yet to become a 

prime resource in predicting particle emissions. 

 

In this study, we introduce a method using satellite AOD data to predict emission inventories for 

PM2.5. As a demonstration of the proposed method, we constructed spatially resolved PM2.5 

emission inventories in the Northeast U.S. using 1 km x 1 km daily AOD retrievals during the 

period of 2002-2013. We derive the emission model based on the concept of one compartment 

model, which has been applied to the ambient environment in the past to estimate emission 

fluxes (EPA 2001) as well as indoor emission sources (Spengler, Samet, and McCarthy 2001)  

Our approach has the potential to generate comprehensive emission inventories cost- effectively 

as oppose to the existing ones.  

 

Methods 

 

Data and Materials 



 

PM2.5 ground monitoring concentration data. The study domain is the Northeast U.S. that 

includes the states of Connecticut (CT), Massachusetts (MA), Maine (ME), New Hampshire 

(NH), New York (NY), Rhode Island (RI) and Vermont (VT). We obtained daily averaged PM2.5 

measurements, mostly from integrated filter samples, measured at 124 monitoring sites among 

the U.S. Environmental Protection Agency (EPA) Compliance Network, Air Quality 

System(AQS) and the Interagency Monitoring of Protected Visual Environments (IMPROVE) 

database during the period of 2002 to 2013. Daily averaged monitoring PM2.5 is used to calibrate 

AOD data into AOD-derived-PM2.5 concentrations (Figure 1). 

 

Figure 1 here. 

  

Satellite Aerosol Optical Depth. The Moderate Resolution Imaging Spectroradiometer (MODIS) 

instrument on board the Earth Observing System (EOS) Aqua satellite provides numerous 

aerosol measures including AOD product reflecting fine particle loading. In 2011, an advanced  

algorithm ,the Multi-angle Implementation of Atmospheric Correction (MAIAC), was presented 

(Lyapustin et al. 2011) providing a set of AOD product with much finer resolution (1 km x 1km) 

compared to the standard MYD04 product at 10km x 10km resolution. A study evaluating the 

MAIAC AOD product concluded that it is more robust under partly cloudy conditions with fewer 

non retrieval days and pixels than the standard product. For this reason, MAIAC AOD also 

provides improved ability in capturing spatial patterns of particle loading (Chudnovsky et al. 

2013). Furthermore, calibration of the MAIAC AOD product was shown to be successful for the 

New England Area (Kloog et al. 2014). In this study, we took advantage of the MAIAC AOD 

Aqua product to predict spatially resolved (1 km x1 km) emission inventories. 

 

Meteorological data. Meteorological parameters such as vertical (VWND) and horizontal wind 

speed (UWND), relative humidity (RH), boundary layer height (PBL), snow coverage, 

precipitation (PRCP) and temperature (TEMP) for the period from 2002 to 2013 were obtained 

from the National Oceanic and Atmospheric Administration (NOAA) North America Regional 

Reanalysis (NARR) database. This dataset assimilates multiple sources of measurements and 

optimizes estimation of meteorological fields as described by (Kalnay et al. 1996). The 



reanalysis dataset provides meteorological variables at a spatial resolution of 32 km x 32 km and 

temporal resolution of 1 day. The PBL is used to estimate the columnar volume of air on a given 

day, and other meteorological variables are used to calibrate the AOD/PM2.5 relationship. All 

NARR daily meteorological variables were linearly interpolated to 1 km×1 km resolution for this 

study using a Matlab package, scatteredInterpolant. More detail on the package algorithm can be 

found in the MathWorks online documentation 

(http://www.mathworks.com/help/matlab/ref/scatteredinterpolant-class.html).   

In building the emission prediction model, surface level wind speed is used to estimate the 

residence time of air mass inside a volume of 1km x 1km x PBL km, while wind direction is the 

key factor to identify the location of the upwind adjacent grid cell. After interpolating both wind 

field parameters into 1km x 1km resolution as described above, we calculated wind speed (WS) 

as the square root of sum of u2 and v2 and wind direction (WD) as the vector sum of UWND and 

VWND. We assumed that the daily wind direction and wind speed was constant within at all 

altitudes at the surface level defined by the NOAA land surface model(Mesinger et al. 2006). 

 

Land use variables. Traffic-related variables including major roads (A1-A3) density and other 

roads (A4) density were gathered from the StreetMap USA database. Roads were classified using 

the Feature Class Code (A1-A4) from the US Census Bureau, 

Topologically Integrated Geographic Encoding and Referencing (TIGER) system. Annual 

averaged traffic count for major roads was obtained from the Highway Performance Monitoring 

System (HMPS) database. We used a Kernel density algorithm to calculate grid (1km x 1km) 

averages of the major traffic density parameters using ESRI® ArcMap software. Land cover data 

for the entire Northeast U.S. were obtained from the 2011 collection of the National Land Cover 

Database (NLCD). With more detailed classification of land use, land cover data for 

Massachusetts were also gathered from the Massachusetts Department of Environmental 

Protection (Mass DEP). Elevation raster data was obtained from the ESRI® database. All land 

use parameters except elevation were used only for emission validation and are excluded from 

both AOD/PM2.5 calibration and the emission model. 

 

NEI emission data. Point, nonpoint, and mobile emissions were obtained from the 2008 and 2011 

U.S. EPA emission inventories. According to EPA’s definition, point emission contains larger 



industrial sources while nonpoint refers to smaller stationary sources that are inventoried at 

county level. Such sources (or sectors) include residential wood combustion, field burning, and 

consumer solvent use etc. Mobile sources pertains mostly transportation emissions such as road 

traffic, locomotive, aircraft and commercial marine vessels. Detailed sector descriptions can be 

found in the 2008 NEI report (EPA 2008). For this study, we aggregated the nonpoint and mobile 

EPA NEI emission data to evaluate the predicted particle emissions. The locations of NEI point 

emissions were intersected with the corresponding 1km x 1km AOD grid cell. A variable 

indicating the presence of NEI point sources was created and was included in the land use 

regression validation models. 

 

Statistical Analysis 

 

The PEIRS approach encompasses three analytical stages: First, we calibrated AOD to obtain 

AOD-derived PM2.5 predictions for all 1km x 1km grids in the study domain. Second, we fit an 

emission model for each grid cell to predict emissions released within the grid. Third, we 

deployed land use regression models and compared county-level predicted and NEI-reported 

emissions to evaluate our method.  

 

AOD/PM2.5 Calibration.  Let us consider an air mass enclosed in a box with a base of 1km x 1km 

(Pixel Area) and a height equal to that of the boundary layer (PBL). We can assume that AOD is 

proportional to the particle mass inside this box based on the previously established relationship 

between AOD and fine particles(Hoff and Christopher 2009). Subsequently, we can express the 

particle mass as the product of the average particle concentration (CPM2.5) and the box volume:  

 

𝐴𝑂𝐷 ∝ 𝑀𝑎𝑠𝑠𝑃𝑀2.5 = 𝐶𝑃𝑀2.5 × 𝑉𝑜𝑙𝑢𝑚𝑒 =  𝐶𝑃𝑀2.5 × 𝑃𝐵𝐿 × 𝑃𝑖𝑥𝑒𝑙 𝐴𝑟𝑒𝑎  (1) 

 

Since the pixel area remains constant (1 km2) and most particles are usually below the boundary 

layer, we can translate the relationship in eq 1. into the basis of a calibration model as follows:  

 

𝐶𝑃𝑀2.5 = 𝛽0 + 𝛽1
𝐴𝑂𝐷

𝑃𝐵𝐿
      (2) 

 



Where β0 is the intercept and β1 is the slope or conversion factor of the simple calibration model. 

Because PBL, relative humidity and particle composition vary daily, we performed daily 

calibrations using a mixed-effects regression model. Including random slopes (𝛼1𝑖 , i: day) and 

intercepts (𝛼0𝑖) by day enables the model to capture day-to-day variability in the AOD/PM2.5 

relationship (Lee et al. 2012, Kloog et al. 2014). Relative humidity (RH), wind speed (WS), 

snow coverage, precipitation, temperature (Temp) and elevation are also included as covariates 

to adjust for site-specific characteristics. We also added interaction terms between AOD and all 

meteorological parameters to further control their effects on particle extinction efficiency. 

However, we did not include any source related land use here because AOD-derived-PM2.5 

concentrations are used to estimate emissions. For this reason, source related parameters should 

be excluded from the calibration process. The final calibration model is as follows: 

 

𝐶𝑃𝑀2.5 = 𝛼0𝑖 + 𝛽0 + (𝛼1𝑖 + 𝛽1)
𝐴𝑂𝐷

𝑃𝐵𝐿
+  𝛽2𝑊𝑆 + 𝛽3𝑅𝐻 + 𝛽4𝑇𝑒𝑚𝑝 + 𝛽5𝑆𝑛𝑜𝑤𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 +

𝛽6𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 + 𝛽7𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 + 𝛽8𝑇𝑒𝑚𝑝 ×
𝐴𝑂𝐷

𝑃𝐵𝐿
+ 𝛽9𝑆𝑛𝑜𝑤𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 ×

𝐴𝑂𝐷

𝑃𝐵𝐿
+ 𝛽10𝑅𝐻 ×

𝐴𝑂𝐷

𝑃𝐵𝐿
+ 𝛽11𝑊𝑆 ×

𝐴𝑂𝐷

𝑃𝐵𝐿
 + 𝛽12𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 ×

𝐴𝑂𝐷

𝑃𝐵𝐿
                (3) 

 

Subsequently, a 10-fold cross validation is conducted to evaluate the calibration model (eq. 3).To 

perform cross validation, data from the monitoring stations are randomly separated into a 10% 

held-out set and a 90% training set. The calibration is a supervised linear regression model fitted 

based on the 90% training set and thereafter to predict the 10% held-out data. The same 

procedure is repeated 10 times until all data are predicted once. We then compare the calibrated 

prediction to the observed PM2.5 concentration and examine the variability explained by the 

prediction (R2) and bias (slope and intercept). The difference in R2 between the 10-fold 

calibration and training (where all data is used to fit the model) should be less than 10% 

otherwise the model is likely over fitted. After careful evaluation, we obtained AOD-derived-

PM2.5 concentrations for all 1km x 1km cells in the study domain. 

 

Emission model. We considered each box as a single compartment and modeled PM2.5 

concentration (C) using the mass balance concept as illustrated in Figure 2: 

 



𝑑𝐶(𝑡)

𝑑𝑡
= ∑ 𝑆𝑜𝑢𝑟𝑐𝑒𝑠 − ∑ 𝑆𝑖𝑛𝑘𝑠     (4) 

 

Figure 2 here. 

 

Within a box, particles are transported from upwind cell (s) (Cu, PM2.5 concentration in the 

upwind cell) or released by sources located inside the box (local emissions). This includes 

primary emissions from local sources as well as formation of secondary particles from precursor 

gases emitted from local or distant sources. On the other hand, particle losses (sinks) within an 

atmospheric column are due to dry deposition (d), wet deposition (w) and air exchange (α) 

transport to the downwind cell. Wet deposition is not accounted for in this model because we 

omitted AOD retrievals during days with rain or clouds.  As previously stated, we used PBL to 

estimate the volume of each 1 km x 1 km cell, and thus the predicted local emission Q is 

expressed in tons/km2/year. Moving forward we will discuss particle transport and model 

derivation in 2-dimensional space. 

 

𝑑𝐶(𝑡)

𝑑𝑡
= 𝛼𝐶𝑢 +

𝑄

𝑃𝐵𝐿
− (𝛼 + 𝑑)𝐶(𝑡) − 𝑑𝐶𝑢    (5) 

 

Since dry deposition is usually considerably slower than the air exchange rate (Donateo and 

Contini 2014), we can simplify the mass balance equation by neglecting dry deposition: 

 

𝑑𝐶(𝑡)

𝑑𝑡
= 𝛼𝐶𝑢 +

𝑄

𝑃𝐵𝐿
− 𝛼𝐶(𝑡)     (6) 

 

Assuming equilibrium, we can solve the differential eq 6. and obtain the following solution: 

 

𝐶 = 𝐶𝑢 +
𝑄

𝛼×𝑃𝐵𝐿
+ 𝐶1𝑒−𝛼𝑡     (7) 

 

In addition, if we assume that the transported pollution Cu is independent of local emissions Q, 

and the integration constant (C1) , we can simplify eq 7. by assuming C1 equals to zero : 

 

𝐶 = 𝐶𝑢 +
𝑄

𝛼×𝑃𝐵𝐿
       (8) 



 

Particle transport primarily occurs between two neighboring cells as shown in Figure 2. However, 

emissions may travel further depending on the wind speed and elevation of the source. Given the 

fine resolution (1km x 1km cells) of this study, transported emission is likely travelling from 

further than one upwind cell. In fact, PM2.5 concentrations of upwind cells within 3km distance 

strongly correlate to the concentration of the corresponding downwind cell. For this reason, 3 

upwind cells are included in the emission model to account for all transported particles. The 

algorithm used to locate upwind cell(s) depends on wind direction in the downwind cell as 

illustrated in Figure 3. 

 

Figure 3 here. 

 

In addition to the within-cell emission, secondary particles are formed from gaseous emissions 

originated from sources situated within and outside the downwind cell. In order to control for the 

secondary particles formed outside the downwind cell and were not captured by the upwind cell 

concentrations, we include  temperature(ºK) in our model as a surrogate of the various weather 

parameters associated with particle formation (Vehkamaki and Riipinen 2012): 

 

𝐶 = ∑ (𝐶𝑢𝑖 ×3
𝑖=1 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) +

𝑄

𝛼×𝑃𝐵𝐿
      (9) 

 

We fitted the above model (eq.9) to predict emissions, Q, for all 1 km x 1 km cells within the 

study domain. 

 

Land use regression. Since emissions are often closely related to land use parameters, we fitted 

regression (LUR) models to examine relationships between model predictions (Q) and source 

types, which is an indirect approach to evaluate PERIRS. The land cover data from MASS DEP 

provides a more detailed classification than that of the NEI. Therefore, we fitted a land use 

model specifically for Massachusetts to examine potential relationships between model 

predictions and different land cover types. In addition, we also included point emission estimates 

from the NEI in the LUR model to account for industrial or larger point sources that may not be 

included in the land use database. Toward this end, we included an indicator variable for point 



emission in the LUR models to determine whether higher Q values are associated with major 

point sources inside the 1km x 1km grid cell.   

 

County level evaluation model.  US EPA reports PM emission from all sources at the county 

level, and for this reason, we averaged our 12-year-averaged-emission predictions by county and 

compared them to the county NEI emission densities as a secondary validation (eq.10). We 

performed two county-level evaluations using NEI 2008 and 2011, respectively. In addition, we 

conducted state-specific evaluations to examine differences among model predictions and NEI 

emissions. Although a better evaluation is to compare annual PEIRS emissions to the NEI in 

corresponding years, we currently do not predict annual emissions with the PEIRS model. The 

reason being annual emission predictions could be biased due to imbalanced data since missing 

in AOD occurs seasonally.  

 

𝑁𝐸𝐼 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 =  𝛽0 + 𝛽1𝑄𝑐𝑜𝑢𝑛𝑡𝑦 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 + 𝜖   (10) 

 

Results and Discussion 

 

AOD/PM2.5 Calibration Performance 

 

Table 1 depicts the performance of AOD/PM2.5 calibration. The model training R square (0.85) is 

moderately high suggesting that the calibration model was well fitted. The cross-validation 

analysis demonstrated that model predictive accuracy is high for temporal variability (R2=0.80) 

and moderate for spatial variability (R2=0.66).  Among AOD-PM2.5 calibration models, that of 

Kloog et al., has so far the strongest predictive power (temporal R2 = 0.87, spatial R2 = 0.87) 

(Kloog et al., 2014). While the temporal predictability is similar between our calibration and that 

reported by of Kloog et al., our spatial predictability is much lower. A possible reason for this 

difference is that Kloog et al., used a hybrid approach that includes not only meteorological 

covariates and elevation, but also many other land use variables, which are crucial PM25 

predictors enhancing spatial predictability. As previously stated, the major goal of our model is 

to predict emissions based on remote sensing data, and it would not be appropriate to include 

source-related covariates such as land use terms.  



 

Predicted emissions 

 

Figure 4 depicts emissions predicted over the period of 2002 to 2013 in the northeast US. We 

observed emission hotspots with more than 35 tons/year/km2 in most highly populated areas such 

as Boston, New York City, and Long island. In addition, we observed transportation emissions 

along major highways.  Finally, we predicted low emission levels for rural areas (<20 

tons/year/km2).  

 

Figure 4 here. 

 

Figure 5 shows the estimated emissions, land cover and population distributions in the Greater 

Boston, New York, and Providence areas. In general, we found similar spatial patterns among 

highly populated areas such as the Greater Boston and New York, reflecting typical urban 

activities. PEIRS predicted high emissions levels in developed areas (Figure 5d and 5e, color in 

red) in east Boston, New York City, and Long Island areas with a mixture sources including 

residential heating, transportation, industrial, and commercial activities. More importantly, we 

were able to capture intra-urban variation. For example, we predicted lower emissions for the 

east Cambridge where the Massachusetts Institute of Technology (MIT) Campus is located. As 

shown in figure 5a, emissions are noticeably lower (25~30 tons/year/km2) as opposed to 

surrounding areas such as Somerville and west Cambridge. The campus area is less populated 

compared to neighboring cities and the school has been actively promoting green building and 

energy sustainability programs over the past decade, which both attribute to lower emission. 

Furthermore, we predicted high emissions at densely populated and commercially active areas in 

northern Brookline and lower emissions at parks, large green spaces, and residential areas in the 

southwestern part of the town (Figure 5a). Our results in New York (Figure 5b) show 

comparable intra-urban spatial pattern of PM2.5 to those reported by a previous study (Clougherty 

et al. 2013).  Clougherty et al., found that large combustion boilers for residential heating, mostly 

burning oil, are concentrated in midtown and downtown Manhattan as well as in some 

neighborhoods of Brooklyn and Queens. These areas are all highly developed with similar 

population density and land use. Even surrounded by high intensity emission sources, we are 



able to identify intense oil-burning emissions in some of the grid cells that exceeded 60 

tons/year/km2 in these neighborhoods.  

 

Figure 5 here. 

 

Our model overestimated emissions in areas surrounded by water surfaces or wetlands, such as 

Providence and southeast Massachusetts (Figure 5c).For instance, the model estimated high 

emissions (20-30 tons/year/km2) in some green areas of southeast Massachusetts where 

anthropogenic sources are scarce. The possible overestimation is likely due to bias in AOD 

readings, as the MAIAC algorithm was developed to retrieve AOD over land, and is less reliable 

for retrievals over water surfaces(Lyapustin et al. 2011). Although we excluded pixels 

encompassing bodies of water prior, AOD retrieval near water or the shore can still be influenced 

by high humidity or ocean glint. Because we estimated PM2.5 concentrations using AOD data, 

biases in the AOD are likely to influence the final emission product as well. However, it is also 

possible that some of the predicted emissions are due to primary or secondary particles from 

natural sources.  

 

Land use regression 

 

Predicted emissions in the northeast United States are related to land use variables (R2 = 0.65). 

Table 2 shows the predicted land-use-specific emissions where the predominant sources include 

developed area (high/medium/low density and open area), traffic, and population. The land use 

regression model predicts that large point sources emit on average 0.58 tons/year/km2 that is 

close to the averaged NEI point emission in 2008 (0.53 tons/year) and 2011(0.26 tons/year).  

Figure 6a shows the residuals (25th percentile = -2.7, mean = 0, 75th percentile = 2.5) of the land 

use regression model in the study area. As noted, the Providence and southeast Massachusetts 

areas have larger residuals (>5 tons/year/km2), which suggests that either the predicted emissions 

are overestimated or they are not correlated to land use covariates, e.g., biogenic sources, 

biogenic precursors or oceanic particles.  Previous studies suggest that in remote areas most 

particles are secondary (Kanakidou et al. 2000, Spracklen et al. 2006, Andreae 2007), which are 

not accounted for by land use models.  



 

Figure 6 here. 

 

In addition to the national land cover product, we also incorporated the land cover data classified 

by the Massachusetts Department of Environmental Protection (Mass DEP), and fitted a separate 

land use model for Massachusetts. Compared to the national model (R2 = 0.65), the 

Massachusetts model has a slightly higher R2 of 0.67. As shown in Table 3, transportation, 

developed area, and population are the larger sources predicted by the land use model. With a 

finer classification, we can see the intra-urban variation related to industrial, residential, and 

commercial sources areas, which is not for the NEI database that are mostly county level 

averages (Figure 7 b and 7c). Crop and livestock farms emissions are 0.7 tons/year/km2, which 

are similar to those reported by the NEI program. Cranberry bogs, nurseries, and orchards 

generate more emissions than other croplands. Consistent with the results of the northeast US 

Land use regression, we observed high residuals in the southeastern Massachusetts. As noted 

above, this may be due to difficulties in measuring AOD near water bodies, or possibly, to the 

presence of sources whose emissions are independent of land use variables.  

 

County level evaluation 

  

We found a moderate correlation between predicted and 2008 NEI emissions (R2=0.52, 

CV=144%). The slope and intercept of the 2008 NEI county model (β1 = 2.6    β0 = -38.7) 

suggest that the model underestimated the county level emissions. Since the NEI emission data is 

right skewed (median = 4.9, mean = 11.8), we suspect the large error is due to extreme values (or 

outliers) in the NEI data. When restricting NEI data to less than 50 tons/year/km2, we obtained a 

better model fit (R2 = 0.66, CV=20.0%, β1 = 0.65 and β0 = -5.6). This suggests that the model 

may underestimate the largest emission sources. The different temporal scale among emission 

predictions and NEI estimates could be another source of uncertainty leading to larger error and 

a larger deviation of the intercept. Nonetheless, the PEIRS method has great potential in 

predicting emissions at finer temporal scales and would reduce the temporal inconsistency error. 

We found similar results when comparing model emission predictions to those reported by the 

2011 NEI. The model fit was significantly improved after removing high NEI emissions from the 



model (R2 = 0.65  0.71, CV= 105%17.9%, β1 = 3.4 1.09, β0 = -47.8  -11.7, all data  

subset). Interestingly, the slope of the county regression model shows that our model 

overestimated emissions in comparison to the 2008 NEI, and slightly underestimated when in 

comparison to 2011 NEI. This is consistent with the emission changes documented in the 2011 

NEI report where emissions overall increased by 25 to 250% compared to 2008 due to 

resuspension of road dust and more frequent wildfires (EPA 2011).  

 

Table 4 and Table 5 show the state specific county level evaluation results compared to 2008 and 

2011 NEI data, respectively. We observed fair agreement for Connecticut and New Hampshire 

than that for states with large sources such as New York and Massachusetts. In general, the 

agreement was improved when outliers were removed from the analysis. Predicted emissions 

were weakly related to NEI data in Vermont suggesting that the model is less sensitive to low 

level emission variations.  As shown in Figure 7, for most counties in Vermont both model 

predicted and NEI-reported emissions are low. The relatively high emissions predicted for Grand 

Isle county, VT, which is surrounded by Lake Champlain, may be due to water bias in the AOD. 

In addition, we did not find a good agreement for Franklin, Chittenden, and Addison counties of 

Vermont where the model predicts higher emissions (6 ~15 tons/year/km2) than those reported 

by NEI (< 5 tons/year/km2).  However, we found out that emissions of particles precursors such 

as NH3, NOx and VOC are relatively high in these three counties according to the NEI 2008 

report. Therefore, it is possible that differences are due to the formation of secondary particles 

and high biomass burning sources, which are accounted for by the model but not included in the 

NEI database. In fact, counties where predicted emissions are higher than those reported by the 

NEI are locations with high precursor emissions. These include urban counties in Greater Boston, 

New Haven, New York City, and Long Island, as well as agriculture-driven counties in the upper 

west New York state.  

  

Table 4 here. 

 

Table 5 here. 

 

Figure 7 here. 



 

Conclusions 

 

In this paper, we have proposed a new method (the PEIRS approach) to construct spatially 

resolved emission inventories for fine particulate matter. The predicted emissions in the 

northeast US are in a reasonable agreement with those reported in the 2008 and 2011 NEI. Our 

model can capture small-scale intra-urban variations in emissions and formation of secondary 

particles. Although inherent biases from the satellite data, possibly due to humidity interference 

and ocean glint, may reduce model accuracy, generally they manifest in remote areas with little 

population. Future research should examine whether the allegedly higher emissions are due to 

AOD measurement artifacts or the presence of secondary formed from biogenic precursors.  

 

Overall, we have demonstrated the potential of satellite AOD data to predict PM2.5 emissions at a 

fine spatial scale (1km x 1km). In contrast to conventional methods collecting emission data for 

known sources, we developed a model, based on the physical properties of particles, that 

captures emissions from all sources within a specific area. We can take advantage of the breadth 

of satellite based remote sensing data to predict emission with a high spatial and temporal 

resolution at low cost. As satellite remote sensing improves, more robust data with better 

temporal and spatial resolution will become available for predicting emissions not just for 

particles but for different gaseous air pollutants.  
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Tables 

 

Table 1. 10 fold cross validation 

R2 (dimensionless) 

RMSE (μg/m3) 

Temporal Spatial 

R2 RMSE R2 RMSE 

Training Performance 0.85 2.56 0.75 0.90 

10 fold Cross Validation 0.80 2.85 0.66 1.06 

 

Table 2. LUR estimated emission from different land use for north east US 

Land use type/ emission sources 
Averaged emission 

(ton/yr/km2) 

On road A1-A3 Major road 0.4 ~ 28 

Developed area High density 13 

Medium density 13 

Low density 6.7 

Open area 5.6 

Population 250 people/cell 0.1 

10,000 people/cell 2.7 

Farms Crop & Livestock 0.34 

NEI point source (NEI 2008 mean = 0.53) 0.58 

Model R2 = 0.65 

 

Table 3. LUR estimated emission from different land use for Massachusetts 

Land use type/ emission sources 
Averaged emission 

(ton/yr/km2) 

On road A1-A3 Major road 0.4 ~ 24.5 

 Public transit 2.5 



Developed area High density residential 3.6 

Medium density residential 3.5 

Low density residential 1.8 

Multifamily residential 2.1 

 Open area 2.4 

 Industrial  4.3 

 Mining 2.4 

 Commercial 3.1 

 Junkyard 4.6 

Population 400 people/cell 0.32 

10,000 people/cell 8 

Farms Crop & Livestock 0.7 

 Cranberry bog, nursery, orchard gardens 2.2 ~ 7.8 

NEI point source  1.5 

Model R2 = 0.67 

 

Table 4. Evaluation results of estimated emission vs. EPA NEI emission 2008 at county level 

 
R2 CV Slope (β1) Intercept (β0) 

Connecticut 0.85 6.61% 0.73 -6.8 

Maine 0.65 9.11% 0.54 -5.5 

New Hampshire 0.86 15.0% 1.44 -15.5 

Massachusetts 0.58  (0.87) 75.4% (6.97%) 1.84  (0.47) -26.8   (1.0) 

Rhode Island 0.21 13.3% 0.20 5.03 

New York 0.58  (0.67) 211.1% (26.3%) 2.99  (0.71) -45.44  (-6.6) 

Vermont 0.01 7.45% 0.02 3.40 

* ( ): are model parameter when data is restricted to counties with ≤50 tons/yr NEI emission 

 

 



Table 5. Evaluation results of emission estimates vs. EPA NEI emission 2011 at county level 

 
R2 CV Slope (β1) Intercept (β0) 

Connecticut 0.88 7.15% 1.41 -11.7 

Maine 0.70 7.69% 0.76 -8.87 

New Hampshire 0.89 8.13% 1.35 -14.6 

Massachusetts 0.63  (0.27) 60.1% (16.1%) 2.37  (0.43) -32.3   (3.7) 

Rhode Island 0.49 10.7% 0.50 -0.47 

New York 0.70  (0.80) 159.6% (21.2%) 3.80  (1.26) -54.7  (-14.3) 

Vermont 0.08 6.98% 0.11 1.96 

* ( ): are model parameter when data is restricted to counties with ≤50 tons/yr NEI emission 
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Figure 1. Study area and EPA monitoring network. 

 

Figure 2. Box model dynamics. 

 



Figure 3. Example of upwind cells identification. wd: wind direction, N: North, NW: Northwest, 

W: west. 

 

Figure 4. Estimated emission in north east US. 

 

 

Figure 5. Estimated emission in (a) Greater Boston, (b) New York, and (c) Providence. Land 

cover type from NLCD 2011 database in (d) Greater Boston, (e) New York, and (f) Providence. 

Population of year 2000 in (g) Greater Boston, (h) New York, and (i) Providence. 

 



 

Figure 6. Residual map of land use regression (LUR) model in (a) northeast US and (b) 

Massachusetts. The residuals are emissions that are not related to land use parameters. 

 

 

 

Figure 7. (a) Estimated emission vs. EPA NEI nonpoint emission in (b) 2008 and (c) 2011 at 

county level. 

 

 

 

 


